
LOGIT REGRESSION 

Logistic regression, more commonly called logit regression, is used 
when the response variable is dichotomous Ge., binary or 0-1). The 
predictor variables may be quantitative, categorical, or a mixture of 
the two. 

Sometimes ordinary bivariate or multiple regression is used in this 
situation. When this is done, the model is called the linearprobability 
model. The linear probability model provides a useful introduction to 
the logit regression model, so we consider it first. 

5.1. THE LINEAR PROBABILITY MODEL 

Suppose that we wish to analyze the effect of education on current 
contraceptive use among fecund, nonpregnant, currently married 
women aged 35-44. Our variables are 

C: contraceptive use (1 if using, 0 otherwise) 
E: number of completed years of education 

The scatterplot of C against E, for a few representative points, might 
look something like the plot in Figure. 5.1. An ordinary bivariate 
regression line can be fitted through the points by ordinary least 
squares (OM), as shown. The estimated equation of the line has the 
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Figure 5.1. The linear probability model: probability of contraceptive use predicted 
by education. Notea: C denotes contraceptive use (1 if using, 0 otherwise), and E 
denotes number of completed years of education. &, denoting the value of C 
predicted from the regression, is interpreted as the probability of currently using 
contraception. 

form 

where 
The observed value of C can assume only two values, 0 and4 1. In 

contrast, the value of C predicted by the regression line, C, can 
assume a continuu9 of values. For most observed values of tht 
predictor variable, C will have a value between 0 and 1. We interpret C 
as the probability that a woman with a specified level of education is 
currently using contraception. 

Because C is interpreted as a probability, (5.1) may also be written 
as 

is the value of C predicted by the regression. 

P - a + b E  (5.2) 

where P denotes the estimated probability of use. If so desired, (5.2) 
can be elaborated by adding more predictor variables, interaction 
terms, quadratic terms, and so on. 



5.2 THE LOGIT REGRESSION MODEL 121 

Although the linear probability model has the advantage of simplic- 
ity, it suffers from some serious disadvantages: 

1. The estimated probability P can assume impossible values. At the 
lower left end of the line in Figure 5.1, P is negative, and at the 
upper right end, P exceeds unity. 

2. The linearity assumption is seriously violated. According to this 
assumption, the expected value of C at any given value of E falls 
on the regression line. But this is not possible for the parts of the 
line for which P < 0 or P > 1. In these regions, the observed 
points are either all above the line or all below the line. 

3. The homoscedasticity assumption is seriously violated. The vari- 
ances of the C values tend not to behave properly either. The 
variance of C tends to be much higher in the middle range of E 
than at the two extremes, where the values of C are either 
mostly zeros or mostly ones. In this situation, the equal-variance 
assumption is untenable. 

4. Because the linearity and homoscedasticity assumptions are seri- 
ously violated, the usual procedures for hypothesis testing are 
invalid. 

5 .  R2 tends to be very low. The fit of the line tends to be very poor. 
Because the response variable can assume only two values, 0 and 
1, the C values tend not to cluster closely about the regression 
line. 

For these reasons, the linear probability model is seldom used, 
especially now that alternative models such as logit regression are 
widely available in statistical software packages such as SAS, LIMDEP, 
BMDP, and SPSS. 

5.2. THE LOGIT REGRESSION MODEL 

Instead of a straight line, it seems preferable to fit some kind of 
sigmoid curve to the observed points. By a sigmoid curve, we mean a 
curve that resembles an elongated S or inverted S laid on its side. The 
tails of the sigmoid curve level off before reaching P = 0 or P = 1, so 
that the problem of impossible values of P is avoided. 

Two hypothetical examples of sigmoid curves are shown in Figure 
5.2. In Figure 5.2a, the response variable is C, as before, and the 
curve increases from near zero at low levels of education to near unity 
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(a) Contraceptive use x education 

“t 

E 

(b) ‘Not using contraception’ x education 

“f 

E 
Figure 5.2. Two examples of sigmoid curves. 

at high levels of education. In Figure 5.2b, the response variable is 
“not using contraception,” denoted by N, where N is one if the 
woman is not using contraception and zero otherwise. Now the curve 
decreases from near unity at low levels of education to near zero at 
high levels of education. 

The sigmoid curve assumes that the predictor variable has its 
largest effect on P when P equals 0.5, and that the effect becomes 
smaller in absolute magnitude as P approaches 0 or 1. (The effect of 
E on P is measured by the slope of a line tangent to the curve at each 
specified value of E.) In many situations, this is a reasonably accurate 
portrayal of reality. 

5.2.1. The Logistic Function 
What mathematical form should we assign to the sigmoid curve? 
Although there are many possibilities, the logistic function tends to be 
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preferred, partly because it is comparatively easy to work with mathe- 
matically, and partly because it leads to a model (the logit regression 
model) that is comparatively easy to interpret. 

There is, however, a certain amount of arbitrariness in the choice of 
functional form to represent the sigmoid curve, and results from the 
model depend to some extent on which functional form is chosen. 
Another functional form that is frequently used is the cumulative 
normal distribution, which forms the basis of the probit regression 
model. The logit and probit models usually yield similar but not 
identical results. We do not consider the probit model any further in 
this book. 

The basic form of the logistic function is 

where 2 is the predictor variable and e is the base of the natural 
logarithm, equal to 2.71828.. . . Throughout this chapter we shall view 
(5.3) as an estimated model, so that P is an estimated probability. 

If numerator and denominator of the right side of (5.3) are multi- 
plied by ez,  the logistic function in (5.3) can be written alternatively as 

where exp(Z) is another way of writing ez. Equation (5.31, or equiva- 
lently (5.41, is graphed in Figure 5.3a. 

A property of the logistic function, as specified by (5.31, is that 
when 2 becomes infinitely negative, e-’ becomes infinitely large, so 
that P approaches 0. When 2 becomes infinitely positive, e-’ be- 
comes infinitesimally small, so that P approaches unity. When 2 = 
0, e-‘ = 1, so that P = -5. Thus the logistic curve in Figure 5.3a has 
its “center” at (Z, P )  = (0,S). 

To the left of the point (0, S), the slope of the curve (i.e., the slope 
of a line tangent to the curve) increases as 2 increases. To the right of 
this point, the slope of the curve decreases as 2 increases. A point 
with this property is called an inflection point. 

Suppose that we have a theory that 2 is a cause of P. Then the 
slope of the curve at a particular value of 2 measures the effect of 2 
on P at that particular value of 2. Therefore, to the left of the 
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z 

Figure 53. The logistic function. 

infictwn point, the effect of Z on P increases as Z increases. To the right 
of the infictwn point, the effect of Z on P decreases as Z increases. The 
effect of Z on P attains its maximum at the inflection point. Effects 
are not constant over the range of the predictor variable, as they are 
in the simple bivariate regression model. 

Another property of the logistic curve is that it is symmetric about 
its inflection point, as can be demonstrated as follows: First, subtract 
0.5 from P, so that the curve is moved downward by 0.5, as shown in 
Figure 5.3b. The inflection point is now at the origin instead of (0, S). 
Except for this downward translation, the shape of the curve is the 
same as before. Of course, when we do this translation, P can no 
longer be interpreted as a probability, because P now ranges between 
-0.5 and +OS.  We therefore rename P as P*. The equation of the 
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curve is now 

where we write P* as P * ( Z )  to emphasize the functional dependence 
of P* on 2. 

The symmetry of the curve, as graphed in Figure 5.3b, can now be 
demonstrated by showing that the vertical upward distance from the 
horizontal axis to the curve at any given positive value of 2 equals the 
vertical downward distance from the horizontal axis to the curve at 
-2-in other words, by proving that P*(Z)  = -P*( -2 ) .  This is 
done by showing that the equation 

1 
- .5 = -[- 1 - S ]  

1 + e-' 1 + e Z  

reduces to an identity, an exercise that is left up to the reader. [An 
identity is an equation that is true regardless of the value of the 
unknown-in this case 2. The validity of (5.6) can be demonstrated by 
reducing (5.6) to the form 0 = 0.3 A less rigorous demonstration that 
the formula is an identity can be accomplished by substituting in a few 
randomly chosen values of 2 and checking to see that equality 
between the left and right sides of (5.6) is preserved. 

5.2.2. The Multivariate Logistic Function 
Equation (5.3) is bivariate. How can we make it multivariate? Suppose 
that 2, instead of being a single predictor variable, is a linear function 
of a set of predictor variables: 

(Note that 2 is not a response variable in this equation.) This 
expression can be substituted for 2 in the formula for the logistic 
function in (5.3): 

All the basic properties of the logistic function are preserved when 
this substitution is done. The function still ranges between 0 and 1 
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and achieves its maximum rate of change, with respect to change in 
any of the Xi,  at P = .5. 
As a simple example, suppose that (5.7) assumes the very simple 

form 2 = -X. Then (5.8) becomes 

1 
P---- 1 + e x  

When 2 = -X ,  as in equation (5.91, the graph of P against X is a 
reversed signwid curve, which b 1 at --oo and 0 at +-oo. 
As a slightly more complicated example, suppose that (5.7) takes 

the form 2 = a + bX, where a and 6 are parameters that are fitted 
to the data: 

Equation (5.10) can be rewritten as 

from which it is 
instead of X = 0. 

(5.10) 

(5.11) 

evident that the curve is centered at X = -a/b 
The constant term a / b shifts the curve to the kft or 

right, depending on whether a / b  is positive or negative, and the coeffi- 
cient b stretches or compresses the curve along the horizontal dimenrion, 
depending on whether lbl (the absolute value of b) k less than or greater 
than 1. If b b negative, the curve goes from 1 to 0 instead of 0 to I as X 
increases. (The reader may demonstrate these properties by picking 
some alternative sets of values of a and b and then constructing, for 
each set, a graph of P against X for (5.3) with a + 6X substituted for 
2.) The introduction of the parameters a and 6 makes the model 
more flexible, so that a better fit can be achieved. 

5.23. The Odds and the Lagit of P 
The logit of P is derived from the logistic function 

1 
1 + e-Z P- (5.3 repeated) 
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From (5.3) it follows that 

1-/> = 1 -

Dividing (5.3) by (5.12) yields 
1 + e~z 1 + e -z 

(5.12) 

1 -P = e (5.13) 

Taking the natural logarithm (base e) of both sides of (5.13), we 
obtain 

(5.14) 

The quantity P/{\ - P) is called the odds, denoted more concisely 
as n (uppercase omega), and the quantity log[P/(l - P)] is called the 
log odds or the logit of P. Thus 

Odds s 
1 -P = n (5.15) 

and 

logit P s log 
1 -P 

■ log ft (5.16) 

The definition of the odds in (5.15) corresponds to everyday usage. 
For example, one speaks of the odds of winning a gamble on a horse 
race as, say, "75:25", meaning .75/(1 - .75) or, equivalent^, 75/ 
(100 - 75). Alternatively, one speaks of "three-to-one" odds, which is 
the same as 75 :25. 

With these definitions, and with the expression in (5.7) substituted 
for Z, (5.14) can be written alternatively as 

logit P = b0 + blXl + 62*2 + * ' • + bkXk 

log 
1 -P 

= b0 + biXl + b2X2 + • • • + bkXk 

(5.17) 

(5.18) 
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or 

(5.19) 

Equations (5.17)-(5.19) are in the familiar form of an ordinary 
multiple regression equation. This is advantageous, because some of 
the statistical tools previously developed for multiple regression can 
now be applied to logit regression. 

5.2.4. Logit Regression Coefficients as Measures of Effect on Logit P 
The discussion of effects is facilitated by considering a simple specifi- 
cation of (5.17) that can be fitted to data from the 1974 Fiji Fertility 
Survey. Suppose that we wish to investigate the effect of education, 
residence, and ethnicity on contraceptive use among fecund, nonpreg- 
nant, currently married women aged 35-44. Sample size is n = 954. 
Our variables are 

P: estimated probability of contraceptive use 
E: number of completed years of education 
U 1 if urban, 0 otherwise 
I :  1 if Indian, 0 otherwise 

For U, “otherwise” means rural, and for I ,  “otherwise” means Fijian, 
as in Chapter 3. 

Our model is 

logit P = a + bE + CU + d1 (5.20) 

which, when fitted to the Fiji data, is 

logit P = - .611 + .055E + .37813 + 1.1611 (5.21) 
(.181) (.025) (.153) (.166) 

Numbers in parentheses under the coefficients are standard errors. In 
every case, the coefficient is at least twice its standard error, indicating 
that the coefficient differs significantly from zero at the 5 percent level 
with a two-tailed test. We shall consider later how the fitting is done. 

Just as in ordinary multiple regression, the coefficients of the 
predictor variables can be interpreted as effects if there is theoretical 
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justification for doing so. Because (5.21) is in the form of a multiple 
regression equation, we can immediately say, for example, that the 
effect of‘ a one-year increase in education, controlling for residence 
and ethnicity, is to increase logit P by .055. Similarly, the effect of 
being urban, relative to rural, controlling for education and ethnicity, 
is to increase logit P by .378. And the effect of being Indian, relative 
to Fijian, controlling for education and residence, is to increase logit 
P by 1.161. 

The trouble is that logit P is not a familiar quantity, so that the 
meanings of these effects are not uery clear. 

To some extent, we can clarify the interpretation of these effects by 
writing logit P as log[P/(l - P ) ]  and then examining the relation- 
ship between P, P/(1 - PI, and log[P/(l - P ) ] .  We observe first 
that P/(1 - P )  is a monotonically increasing function of P, and 
log[P/(l - P ) ]  is a monotonically increasing function of P/(1 - P ) ,  
as shown in Figure 5.4. [A function f ( P )  is monotonically increasing if 
an increase in P always generates an increase in f ( P ) . ]  Figure 5.4 also 
shows the graph of log[P/(l - P ) ]  against P .  

Monotonicity means that if P increases, P/(1 - P )  and log[P/ 
(1 - P ) ]  also increase; if P decreases, P/(1 - P )  and log[ P/(1 - PI] 
also decrease. Conversely, if log[ P/(1 - P ) ]  increases, P/(1 - P )  and 
P also increase; if log[P/(l - P ) ]  decreases, P/(1 - P )  and P also 
decrease. 

In (5.21), a one-year increase in E generates an increase of .055 in 
log[ P/( 1 - P ) ] ,  which, because of monotonicity, goes hand in hand 
with increases in P/(1 - P )  and P. In other words, if b is positiue, the 
effects of E on log[P/(l - P ) ] ,  P/(1 - PI, and P are positiue. If b is 
negatiue, the effects of E on log[P/(l - P ) ] ,  P/(1 - P), and P are all 
negatiue. Similar statements can be made about the effects of U and I. 

This is helpful, but still not very satisfactory. The next section 
further sharpens the conceptualization of “effect.” 

5.2.5. Odds Ratios as Measures of Effect on the Odds 

From (5.20) and (5.161, our estimated model may be expressed as 

log fl = a + bE + CU + dI (5.22) 

Taking the exponential of both sides [i.e., taking each side of (5.22) as 
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(a) P/( 1 - PI plotted against P 

1 P 

(bl log cP/(l- PI) plotted against PI( 1 - PI 

(c) log W( 1 - P)] plotted against P 

Fimre 5.4. Graphic demonstration that P/(1 - P) and log(P/(l -PI) arc both 
monotonically increasing functions of P. 
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a power of el, we obtain 

0 = e a + b E + c U + d l  (5.23) 

Suppose we increase E by one unit, holding U and I constant. 
Denoting the new value of as a*, we have 

which can be written alternatively as 

b .  
n* 
a = e  - 

(5.24) 

(5.25) 

From (5.24), it is evident that a one-unit increase in E, holding other 
predictor variables constant, multiplies the odds by the factor eb. The 
quantity eb is called an odds ratio, for reasons that are obvious from 
(5.25). 

Equation (5.25) can be arrived at more directly by noting that, 
because (5.22) is in the form of a multiple regression equation, the 
effect of a one-unit increase in E, holding other predictor variables 
constant, is to increase log 0 by b units. Thus 

log n* = log n i- b (5.26) 

Taking each side of (5.26) as a power of e, we obtain 

a* = R e b  (5.27) 

which yields (5.25) when both sides are divided by 42. 
Let us review what has happened. The original coeficient b repre- 

sents the additive effect of a one-unit change in E on the log odds of 
using contraception. Equivalently, the odds ratio e represents the multi- 
plicative effect of a one-unit change in E on the odds of using contracep- 
tion. Insofar as the odds is a more intuitively meaningful concept than 
the log odds, eb is more readily understandable than b as a measure 
of effect. 

The above discussion indicates that the logit model may be thought 
of as either an additive model or a multiplicative model, depending on 
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how the response variable is conceptualized. When we consider the log 
odds as the response variable, the logit model is an additive model, as in 
ordinary multiple ~gresswn. But when we conskkr the odds as the 
response variable, the logit model is a mult&licative model, regarding 
the definition and interpretation of effects. 

So far we have considered the effect of a one-unit change in E, 
which is a quantitative variable. What about a change in U, the 
dummy variable indicating urban or rural residence? If we consider 
the effect of a one-unit change in U (from 0 to 1) on the odds of using 
contraception, holding E and I constant, then, starting from (5.23) 
and using the same logic as before, we obtain 

In other words, the effect of being urban, relative to rural, controlling 
for education and ethnicity, is to multiply the odds of using contracep- 
tion by ec. Similarly, the effect of being Indian, relative to Fijian, 
controlling for education and residence, is to multiply the odds by ed. 

In our Fijian example [see equation (5.21) above], we have that 
eb = 3.193. There- 
fore, a one-year increase in E, holding U and I constant, multiplies 
the odds by 1.057 (equivalent to a 5.7 percent increase). A one-unit 
increase in U (from 0 to 1-Lee, from rural to urban), holding E and I 
constant, multiplies the odds by 1.459 (a 45.9 percent increase). A 
one-unit increase in I (from 0 to 1-i.e., from Fdian to Indian), 
holding E and U constant, multiplies the odds by 3.193 (a 219.3 
percent increase). 

e.055 - 1.057, ec = ee3” = 1.459, and ed 5 

5.2.6. The Effect on the Odds When the Predictor Variable Is 
Categorical with More Than Two Categories 
Let us alter our model of the effect of education, residence, and 
ethnicity on contraceptive use, as follows: 

P: estimated probability of contraceptive use 
M: 1 if medium education, 0 otherwise 
H: 1 if high education, 0 otherwise 
U 1 if urban, 0 otherwise 
I: 1 if Indian, 0 othewise 

This is the same model as before, except that education is redefined as 
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a categorical variable with three categories: low, medium, and high, 
with low as the reference category. 

In log odds form, the model is 

log n =  a + bM + cH + dU + f I  (5.29) 

From (5.291, we can calculate the following values of log i2 for low, 
medium, and high education by setting (M, H )  alternatively to (0, 0), 
(1,0), and (0,l): 

Low education 
Medium education 

( H  = 0, M = 0): log nL = a + dU + p 
( H  = 0, M = 1): log nM = a + b + dU + fl 

High education ( H = l , M = O ) :  l o g n H = a + c + d U + f I  

From these values of high, medium, and low education, we obtain 

Equations (5.30145.32) can be rewritten 

Equation (5.33) says that the effect of medium education, relative to 
low education, controlling for U and I ,  is to increase log fl by b. 
Equation (5.34) says that the effect of high education, relative to low 
education, controlling for W and I, is to increase log O by c. Equation 
(5.35) says that the effect of medium education, relative to high 
education, controlling for U and I is to increase log O by b - c .  It 
doesn’t matter what values U and I are held constant at, because 
terms in U and I cancel in (5.30)-(5.32). Except for the form of the 
response variable, these results are the same as those obtained in 
Chapter 2 for ordinary multiple regression. 
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If equations (5,331-635) are taken as powers of e, these equations 

nM = R,eb (5.36) 

OM OHeb-c (5.38) 

Equation (5.36) says that the effect of medium education, relative to 
low education, controlling for U and I, is to multiply the odds by eb. 
Equation (5.37) says that the effect of high education, relative to low 
education, controlling for U and I, is to multiply the odds by ec. 
Equation (5.38) says that the effect of medium education, relative to 
high education, controlling for U and I, is to multiply the odds by 
ebVc.  

In equations (5.33145.351, the effects on log a, which are additive, 
are 6, c, and 6 - c. In equations (5.36)-(5.381, the effects on a, 
which are multiplicative, are eb, ec, and eb-c. 

Because (5.29) is in the form of a multiple regression equation, we 
can immediately say that the effect on logit P of, say, medium 
education, relative to high education, does not depend on which 
education category is chosen as the reference category. It follows that 
the effects on P/(1 - P) and P itself do not depend on which 
category of education is chosen as the reference category. Changing 
the reference category does not require one to rerun the model. One 
can derive the education coefficients in the new model from the 
education coefficients in the original model. (See Section 2.4.2 of 
Chapter 2.) The coefficients of the other predictor variables are 
unaffected by changing the reference category for education. 

become 

OH = nLec (5.37) 

5.2.7. The Effect of the Predictor Variables on the Risk P Itself 
Let us return to our example of the effects of education ( E l ,  residence 
(U = 1 if urban, 0 otherwise), and ethnicity (I = 1 if Indian, 0 other- 
wise) on contraceptive use, where education is once again conceptual- 
ized as a quantitative variable, namely, the number of completed years 
of education. 

If we wish to look at the effects of the predictor variables directly 
on the risk P, we must go back to the basic form of the logistic 
function: 

1 
P =  1 + e - (o+bE+cU+dl )  (5.39) 
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What is the effect on P of a one-unit increase in E, holding U and 
I constant? Denoting the new value of P as P*,  we get 

1 
1 + e - ( a + b ( E + l ) + c U + d / )  

p*  = (5.40) 

Both the difference, P* - P (representing the additive effect), and 
the ratio, P * / P  (representing the multiplicative effect), are functions 
not only of b but also of a, c,  d, E, U, and I. Terms in a, c ,  d, E, U, 
and I do not cancel as they do in the case of the log odds (where all 
that remains in the difference is b)  or the odds (where all the remains 
in the ratio is e’). Therefore, both the additive effect and the 
multiplicative effect of a one-unit change in E on P depend on the 
levels of E, U, and I. 

One way to handle this problem is to set U and I equal to their 
means in the sample and then to calculate and tabulate values of P 
for E = 0, 1,2, .  . . . We shall return to this approach when we discuss 
how to present logit regression results in a multiple classification 
analysis (MCA) format. 

Because the effects of the predictor variables on P are not as 
simple as the effects on rR and log n, logit regression results are often 
presented as effects on or log 0. 

5.2.8. Interactions 
Let us now complicate the model considered in Section 5.2.7 by 
adding an interaction between residence and ethnicity. For reasons 
that will become clear shortly, it is convenient to represent logit P as 
log a. Our estimated model is then 

logR = a + bE + CU + dI + f U I  (5.41) 

Because (5.41) is in the form of an ordinary multiple regression 
equation, we can say immediately that the effect of a one-unit increase 
in U (from 0 to 1) on log a, holding E and I constant, is to change 
log R by c + fI (see Section 2.6 in Chapter 2). Denoting the new 
value of R as R*. we therefore have that 

log n* = log n + (c +fI) (5.42) 
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If we take each side of (5.42) as a power of e, (5.42) becomes 

If f is positive, the multiplicative effect of a one-unit increase in U 
increases as I increases from 0 to 1 &e., from F&an to Indian). If f is 
negative, the multiplicative effect of a one-unit increase in U de- 
creases as I increases from 0 to 1. 

It can similarly be shown that a one-unit increase in I, holding E 
and U constant, increases log SZ by d + fv and multiplies SZ by ed+fu. 
If f is positive, the multiplicative effect of a one-unit increase in I 
increases as U increases from 0 to 1 (i.e., from rural to urban). If f is 
negative, the multiplicative effect of a one-unit increase in I decreases 
as U increases from 0 to 1. 

Note that , in the context of (5.431, interaction between U and I means 
that the mult@licative effect of U on SZ depnds on the leml of I .  
Simtlarly, the multiplicative effect of I on SZ dew& on the level of W. 

5.2.9. Nonlinearities 
Let us further complicate the model by adding a nonlinearity to the 
effect that E has on log S Z :  

logo = a + bE + cE2 + d U + j 7  + gUI (5.44) 

Again, because (5.44) is in the form of a multiple regression equation, 
we can say immediately that the (instantaneous) effect of a one-unit 
increase in E, holding U and I constant, is to change logn by 
b + 2cE (see Section 2.7.1 in Chapter 2). Denoting the new value of 

as a*, we therefore have that 

log n* - log n + ( b  + 2cE) (5.45) 

Taking each side of (5.45) as a power of e, we can rewrite (5.45) as 

n* = n e b + 2 c E  (5.46) 

If c > 0, the multiplicative effect of a one-unit increase in B on SZ 
increases as E increases. If c < 0, the multiplicative effect of a 
one-unit increase in E on SZ decreases as E increases. 

Note that, in the context of (5.46), nonlinear@ in E means that the 
multiplicative effect of E on SZ depnds on the level of E.  
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5.3. STATISTICAL INFERENCE 

5.3.1. Tests of Coefficients 
The computer output for logit regression includes estimated standard 
errors and p values for the coefficients. The standard error of a 
coefficient, b ,  is interpreted as the standard error of the sampling 
distribution of b,  just as in ordinary regression. As before in this book, 
we shall accept the standard errors on faith and not be concerned 
about the details of the statistical theory underlying their derivation. 

From a coefficient b and its standard error s b ,  a 2 value can be 
calculated as 

(5.47) 

where p is the hypothesized value of the coefficient in the underlying 
population. Usually our null hypothesis is that P = 0. then (5.47) 
reduces to 

b z = -  
sb 

(5.48) 

If our hypothesized value of the coefficient in the underlying popula- 
tion is correct, then, for large samples, the sampling distribution of 2 
is approximately standard normal with mean 0 and variance 1. How 
large is large? A rule of thumb that is sometimes used is the following: 
As long as the ratio of sample size to the number of parameters to be 
estimated is at least 20, the normal approximation is usually satisfac- 
tory. The sampling distribution of 2 for small samples is more 
complicated and is not considered in this book. 

Given the coefficients and their standard errors and 2 values, 
hypothesis testing and the construction of confidence intervals are 
done in the same way as in ordinary multiple regression, using the 
table of standard normal probabilities (Table B2, Appendix B). One 
does not use the table of t critical points in Table B.1 (Appendix B) .  In 
Chapter 2 on multiple regression, the formulae analogous to (5.47) 
and (5.48) had t in place of 2. In logit regression, however, the 
sampling distribution of ( b  - p ) / s b  does not conform to Student's t 
distribution. 
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In logit regression as in ordinary multiple regression, one can 
optionally print out a regression coefficient covariance matrix and test 
whether two coefficients (e.g., the coefficients of A4 and H, denoting 
medium and high education) differ significantly from each other. The 
test procedure is the same as that described earlier in Section 2.9.2 of 
Chapter 2. 

If one is dealing with the odds instead of the log odds, then one 
needs to construct confidence intervals for eb instead of b. If the 
boundaries of the confidence interval for b are u and v ,  then the 
boundaries for the confidence interval for eb are calculated as e' and 
e". 

53.2. Testing the Difference Between Two Models 
As we shall discuss in more detail later, the likelihood L is the 
probability of observing our particular sample data under the assump- 
tion that the fitted model is true. Thus L is somewhere between 0 and 
1. ?'he log likelihood, or log L (log to the base e),  is often mathemati- 
cally more convenient to work with than L itself. Because L lies 
between 0 and 1, log L is negative. 

Suppose that we have two logit regression models which have the 
same response variable but different sets of predictor variables, where 
the second model has all the predictor variables included in the first, 
plus at least one more. We say that the first model is nested in the 
second model. 

Let us denote the likelihood of the first model by L,, and the 
likelihood of the second model by L,. One way to test whether the 
two models differ significantly from each other might be to test 
whether L ,  differs significantly from L,, or, equivalently, whether 
L, - L, differs significantly from zero. But his is not possible, because 
the sampling distribution of L, - L, is not known. 

Alternatively one might think of testing whether L,/L2 differs 
significantly from 1. But the sampling distribution of L,/L, is not 
known either. 

Fortunately, a statistic for which the sampling distribution is known 
is -log( L,/L,),, where L, < L,. This can be written as 

-log( L , / W 2  = - 2 log( L,/L,) 
= -2(log L, - log L,) 
= (-210g L,) - (-21ogLJ (5.49) 
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The quantity LJL, is called the likelihood ratio. The condition 
L ,  < L,, which is not restrictive, simply means that the first model is 
nested in the second model. When L,  < L 2 , -  ~ O ~ ( L , / L , ) ~  is posi- 
tive. 

We can use (5.49) to test whether the second model fits the data 
significantly better than the first model. The test is a simple x 2  test. It 
turns out that - Io~(L, /L,)~ (i.e., the positive difference in - 2 log L 
between the two models) is distributed approximately as x 2  with degrees 
of freedom equal to the diference in the number of coeficients to be 
estimated in the two models. The word “distributed” refers here to the 
sampling distribution of the difference in -21og L; if we took re- 
peated samples from the same underlying population, each time fitting 
the two models and computing the difference in -21og L between 
the two fitted models, we would find that the difference in -21og L 
would be distributed as just mentioned. 

For example, suppose as a real-life example, for fecund, nonpreg- 
nant, currently married women aged 35-44 in the 1974 Fiji Fertility 
Survey, that the two fitted models are 

logit P = .363 - .034E + S97U (5 S O )  

and 

logit P = - .611 + .055E + .378U + 1.1611 (5.51) 

where P denotes the probability of using contraception, E denotes 
number of completed years of education, U denotes residence (1 if 
urban, 0 otherwise), and I denotes ethnicity (1 if Indian, 0 otherwise). 

The - 2  log L statistic is 1264.6 for the first model and 1213.1 for 
the second model. (These values are automatically printed out by the 
SAS program for binary logit regression.) The difference in -21og L 
between the two models is therefore 51.5. The difference in the 
number of coefficients to be estimated is 1, so d.f. = 1. Consulting the 
x 2  table in Appendix B (Table B.41, we find that x 2  with d.f. = 1 is 
10.8 for p = .001, which is the highest level of significance included in 
the table. Because our observed value of x 2  is 51.5, which is greater 
than the critical point of 10.8, we can say that the two models differ 
with an observed level of significance of p < ,001. We conclude that 
the model in (5.51) fits the data much better than the model in (5.50). 

In (5.50) and (5.51), - 2 log L is approximately 1200, which means 
that log L is approximately -600 and L is approximately eVm,  which 
is approximately This extremely small number, representing 
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the likelihood of the observed data under the assumption that the 
model is true, might lead one to think that the model fits poorly. It 
must be remembered, however, that each individual observation has a 
probability, and that the overall likelihood is the product of these 
individual probabilities. Each individual probability is a number less 
than one. If the sample size is large, the product of the individual 
probabilities will be an extremely small number, even if the individual 
probabilities are fairly close to one. Therefore, a very small likelihood 
does not necessarily mean a poor fit. 

Very frequently, the two models compared are the model in which 
we are interested, which we may refer to as the test modef, and what is 
often called the intercept model. For example, if the test model is 
specified by (5.511, the corresponding intercept model is 

logit P = a (5.52) 

where a is a constant to be fitted. In effect, we ask whether the test 
model differs significantly from a baseline model with no predictor 
variables. Computer programs for logit regression typically print out 
not only the value of -21og L for both the test model and the 
intercept model, but also the p value for the difference in - 2 log L 
between these two models. In this case, there is no need to consult a 
x 2  table, because the computer does it for us. For the Fiji data, the 
logit regression output for the test model in (5.51) indicates a p value 
of .OOO for the difference between this model and the intercept model. 
Because .OOO is a rounded value, this means that p < .0005. In other 
words, the test model fits the data much better than the intercept 
model. 

5.4. GOODNESS OF FIT 

In multiple regression, the traditional indicator of goodness of fit is 
R2, which measures the proportion of variation in the response 
variable that is explained by the predictor variables. In the case of 
logit regression, one could also calculate the proportion of variation in 
the response variable that is explained by the predictor variables, but 
in this case it is impossible for the observed values of the response 
variable, which are either 0 or 1, to conform exactly to the fitted 
values of P. The maximum value of this proportion depends on the 
mean and variance of P (Morrison, 1972). 
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An alternative measure of goodness of fit may be derived from the 
likelihood statistic. Let Lo denote the likelihood for the fitted inter- 
cept model, and let L ,  denote the likelihood for the fitted test model. 
Define pseudo-R2 as 

1 - (Lo/L,)2/n 
1 - Lyn 

pseudo-R2 = (5.53) 

(5.54) 

where n is the sample size. The minimum value of this quantity is zero 
when the fit is as bad as it can be (when L,  = Lo), and the maximum 
value is one when the fit is as good as it can be (when L, = 1). This 
definition of pseudo-R2 was suggested by Cragg and Uhler (1970). 
Unfortunately there is no formal significance test that utilizes this 
measure. 

Another definition suggested by McFadden (1974) is simply 

pseudo-R2 = 1 - (log L,/log L1)"/" (5.55) 

There is no formal test that utilizes this measure either. 

regression is 
The definition of pseudo-R2 used by the SAS program for logit 

pseudo-R2 = 
-210g L, (5.56) 

where k denotes the number of coefficients to be estimated, not 
counting the intercept. Recall from the previous section that the 
quantity - 2 log Lo - 2 log L ,  is model chi-square. If model chi-square 
is less than 2k  in (5.56), pseudo-R2 is set to zero (Harrell, 1983). 
Pseudo-R, computed as the square root of pseudo-R2, is sometimes 
presented instead of pseudo-R2. Pseudo-R, computed for the model 
presented earlier in equation (5.21), is .22. 

There are several difficulties with these measures of pseudo-R*, 
some of which have already been mentioned. First, there are several 
different measures available, which can give rather different numerical 
results when applied to the same data set. Second, there is little basis 
for choosing one measure over the other. Third, statistical tests that 
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utilize pseudo-R2 are not available for any of the measures. For these 
reasons, many authors do not present values of pseudo-R2 when 
reporting results from logit regression analyses. If the analyst does use 
one of the measures, he or she should report which one. 

5.5. MCA ADAPTED TO LOGIT REGRESSION 

When multiple classification analysis (MCA) is adapted to logit regres- 
sion, both unadjusted and adjusted values of the response variable can 
be calculated, just as in ordinary MCA. The unadjusted values are 
based on logit regressions that incorporate one predictor variable at a 
time, and the adjusted values are based on the complete model 
including all predictor variables simultaneously. We shall consider 
only adjusted values in this chapter. 

Although pseudo-R is the analogue of ordinary R, there is no lofit 
regression analogue to partial R. Therefore, measures of partial 
association are omitted from the MCA tables based on logit regres- 
sion. 

Statistical computing packages such as SPSS, SAS, BMDP, and 
LIMDEP do not include MCA programs for logit regression. The 
analyst must construct the MCA tables from the underlying logit 
regressions, as described below. 

5.5.1. An Illustrative Example 
To illustrate how MCA can be adapted to logit regression, we con- 
sider the contraceptive use effect of age, age-squared, education (low, 
medium, and high), residence (urban, rural), ethnicity (Indians, 
Fijians), and residence X ethnicity. Whereas we previously considered 
fecund, nonpregnant, currently married women aged 35-44, we now 
broaden the age range to 15-49 while at the same time introducing a 
control for age and age-squared. An age-squared term is included 
because contraceptive use tends to increase with age up to about age 
35 or 40, after which it tends to level off or even decline. This kind of 
simple curvature is readily captured by a quadratic term, as discussed 
earlier in Chapter 2. 

Our variables are 

P: estimated probability of contraceptive use 
A: age 
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M: 1 if medium education, 0 otherwise 
H: 1 if high education, 0 otherwise 
U: 1 if urban, 0 otherwise 
Z: 1 if Indian, 0 otherwise 

In log odds form, the model is 

I o g R - a  + b A  + C A 2 + d M + f H + g U + h I + j U Z  (5.57) 

In odds form, the model is 

(5.58) 

In probability form, the model is 

1 
(5.59) 

1 + 
- ( a  + bA + c  A2 +dM f f H + g U + h l  + jUI )  P =  

When the model is fitted to the Fiji data, it is found, as shown in 
Table 5.1, that all coefficients except j (the coefficient of the UZ 

TABLE 5.1. Coefficients and Effects (Odds Ratios) for the Estimated Model, 
log f l  = a + bA + d2 + dM + fH + gV + hZ + jUZ: Fecund, Nonpregnant, 
Currently Married Women Aged 15-49 in the 1974 FUi Fertility Survey' 

Predictor 
Variable Coefficient (S.E.) Effect (Odds Ratio) 

Intercept 

Age 
A 
AZ 

H 
M 

U 
1 
Ul 

Education 

Residence X ethnicity 

-5.594*(.610) 

.255*(.038) 
- .003*(.001) 

.331 *(.lo21 

.254*(.096) 

.294*( .I 27) 
1.160*(.099) 

-.046 (.158) 

,.331 = 1.392 
e.254 = 1.289 

,.294-.0461 ~ 1.342 ,-.0461 

,1.160-.046U = 3 190 e-.046U 

"The response variable is the log odds of contraceptive use. An asterisk after a coefficient 
indicates that the coefficient differs from zero with a two-sided p < .05. Numbers in parentheses 
following coefficients are standard errors of coefficients. The effect of age depends on the level 
of A, the effect of residence depends on the level of I, and the effect of ethnicity depends on the 
level of U; if A, U, and I are set to their mean values of 31.03, .353, and .609, respectively, these 
effects are 1.071 for age, 1.305 for residence (U), and 3.139 for ethnicity ( I ) .  
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interaction) are significant at the 5 percent level or higher. Although 
the UI term could be dropped from the model (the model would then 
have to be reestimated without the UI term), we retain it for purposes 
of illustration. Table 5.1 also shows effects, as measured by odds 
ratios. 

5.5.2. Table Set-up and Numerical Results 
Table 5.2 shows the MCA table set-up and numerical results for 
adjusted values of log Q. The model is given by equation (5.57), which 
is repeated for convenience in the footnote to the table. Because 
(5.57) is in the form of a multiple regression equation, the table set-up 
is done in exactly the same way as in ordinary multiple regression, as 
described in Chapter 3. Although unadjusted values are not shown 
here, they would also be set up as in Chapter 3, had we included 
them. 

Because age is a continuous variable, one must enter selected 
values of age, which play the role of categories. We have chosen 15, 
25, 35, and 45. All the other variables are categorical to begin with 
and require no selection of values. In each panel, other variables are 
controlled by setting these variables at their mean values in the entire 
sample, and these mean values are given in the footnote to the table. 
When the values of the coefficients and mean values are substituted 
into the formulae in the first column of the table, one obtains the 
numerical values given in the second column of the table. Using the 
information given in the footnote to the table, the reader can replicate 
the numerical values in the second column of the table as a check on 
understanding. 

Whereas Table 5.2 gives adjusted values of log 0, Table 5.3 gives 
corresponding adjusted values of 0 and P. The adjusted values of 0 
are obtained by taking the adjusted values of log 0 in Table 5.2 as a 
power of e, that is, f'l - elogn. Adjusted values of P are then calcu- 
lated as 

n 
P-- 1 + 0  

This formula is derived by solving the equation Q = P/(1 - P) for P. 
The numerical results in Tables 5.2 and 5.3 show that there is 

indeed a tendency for contraceptive use to level off at the older 
reproductive ages, which justifies the inclusion of the age-squared 
term in the model. As mentioned earlier, the interaction between 
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TABLE 5.2. MCA Table of Adjusted Values of the Log Odds of Contraceptive 
Use for the Estimated Model, log Q = (I + bA + cAz + dM +fH + gU + hl + jUI: Fecund, 
Nonpregnant, Currently Married Women Aged 15-49 in the 1974 FQi Fertility Survey”‘ 

Adjusted Value of log fl 
Predictor 
Variable n Formula 

Numerical 
Value 

25 
35 
45 

- 
- 
- 

a + 25b + (2.5)’~ + d a  + @ +  g o  + hf + jm 
a + 356 + (35I2c + d a  + fH+ g o  + hf + jm 
a + 45b + (49% + d@ + fR + gD + hi + jm 

- ,204 
.451 
.413 

Education 
L O W  1266 a + b x + c z + g u + h i + j i i i  - .lo6 
Medium 1044 a + d + b x +  c? + g o  + h j  + jn .148 
High 1169 a + f + b x +  c;i? + g D  + hf + jm .226 

Residence and 
ethnicity 

Urban Indian 854 a + g + h + j + b x +  cA? + d@ + ff? .691 
Urban Fijian 375 a + g + b x +  + da + fn - .423 
Rural Indian 1265 a + h + b x +  c? + d a  + fg .443 
Rural Fijian 985 a + b x + c z + d @ + f l  - .717 

Total 3479 

“The estimated model is 

log Q = -5.594 + .255A - .003AZ + .254M + .331H + .294U + 1.1601 - .046U1 

Mean values of the predictor variables are A’= 31.03, A’= 1021.66, w = ,300, f? = .336, 0 = .353, 
i = .609, and m= .245. Note that A* and UI are treated as separate variables, so that means are 
calculated as the mean of A’ (instead of the square of the mean of A )  and the mean of UI (instead of the 
mean of U times the mean of I). -21og Lo = 4817.20 for the intercept model and -2  log L ,  = 4462.12 
for the test model, given above. The test model differs significantly from the intercept model, with 
p < .001 from the likelihood ratio test. Pseudo-R for the test model is .27. 
‘The values of log Q in the table were actually calculated from values of coefficients and means accurate 
to seven significant figures. It turns out that, in this example, the use of figures rounded to only three 
decimal places introduces substantial errors in the estimates of log 0, Q, and P. The main source of 
these errors is the use of - .003 instead of - .003162000 for the coefficient of AZ. 
‘To be on the safe side, intermediate calculations should always employ data values with at least two 
more significant figures than the number of significant figures desired in the final estimate. Note that 
significant figures are not the same as decimal places. The data value .002 has three decimal places but 
only one significant figure, because leading zeros are not counted as significant figures. The data value 
1.003 has three decimal places but four significant figures. The number 1.0030 has five significant figures, 
because the last zero indicates that the data value is accurate to four decimal places. 

- 
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TABLE 5.3. MCA Table of the Wwted Effwta of Age, Education, 
Reridenee, and Ethnicity on the Odds of Contraceptive Use and the 
Probability of Contraceptive Use for the Estimated ModeI, 
log Q = (I + M + d2 + ClM +jM + gU + Irl + jVk Fecund, Nonpregnant, 
Currently M a d 4  Women Aged 15-49 in the 1974 FUi FaUity Survey. 

Predictor 
Variable 

n 

Adjusted Value - 
Q P 

Age 
15 
25 
35 
45 

Education 
LOW 
Medium 
High 

Residence and 
ethnicity 

Urban Indian 
Urban Fijian 
Rural Indian 
Rural Fijian 

Total 

1266 
1044 
1169 

854 
375 

1265 
985 

3479 

.225 

.a15 
1.569 
1.605 

.m 
1.160 
1.253 

1.995 
.655 

1.557 
.488 

.18 

.45 

.61 

.62 

-47 
.54 
.56 

.67 

.40 
-61 
.33 

~ 

‘Values of are calculated by taking the values of log 0 in Table 5.2 as a power of e. Values of 
P are then calculated as n/(l + a>. Among the 3479 women, 1810 are users and 1669 are 
nonusers. Values of n and P were calculated from more accurate values of log n than shown in 
Table 5.2; see footnote in Table 5.2. 

residence and ethnicity is not statistically significant, although we have 
left the interaction in the model. Urban women have somewhat higher 
rates of contraceptive use than do rural women, controlling for the 
other variables in the model. Indian women have considerably higher 
rates of contraceptive use than do Fijian women, controlling for the 
other variables in the model. 

Although the probabilities in the last column of Table 5.3 are 
presented in decimal form, they are frequently presented in the 
literature in percentage form. In percentage form, the value of F for, 
say, urban Indians would be presented as 67 percent instead of .67. 

Normally, in a published research paper in an academic journal, 
one would not present formulae for adjusted log 0, as shown in Table 
5.2. Instead, one would omit log altogether from the tables and 
combine Tables 5.2 and 5.3 into a single table, with columns for 
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numerical values of n, adjusted a, and adjusted P. Because adjusted 
R can be calculated from adjusted P as R = P(l - PI, even adjusted 
R would usually be omitted. 

5.6. FITTING THE LOGIT REGRESSION MODEL 

To fit the logit regression model, we use the method of maximum 
likelihood. 

5.6.1. The Maximum Likelihood Method 
To illustrate this method, let us consider a very simple model: 

logit P = a + bX (5.61) 

which can be written alternatively as 

(5.62) 

We assume that the mathematical form of (5.61) and (5.62) is correct, 
but we don’t yet know the values of a and 6, which are treated as 
unknowns. 

The first step is to formulate a likelihood function, L. As mentioned 
earlier, L is the probability of observing our particular sample data 
under the assumption that the model is true. That is, we assume that 
the mathematical form of the model, as given by (5.61) or (5.62), is 
correct, but we don’t yet know the values of a and 6. We choose a and 
b so that L is maximized. In other words, we choose values of the 
unknown parameters that maximize the likelihood of the observed data 
and call these the best-fitting parameters. The method can be thought of 
as considering all possible combinations of a and b, calculating L for 
each combination, and picking the combination that yields the largest 
value of L. In practice we use a mathematical shortcut, which is 
described below. 

5.6.2. Derivation of the Likelihood Function 
Although we shall not usually be concerned about the mathematical 
details of maximum likelihood estimation, it is nevertheless useful to 
examine a simple example to provide a better feel for how the method 
works. 
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Suppose that our original response variable is Y, which for individu- 
als is either 0 or 1. Our model is 

(5.62 repeated) 

Denote the first individual by subscript 1. For this individual (X, Y) 
= (Xl,Yl>. We then have that 

1 
‘1 = 1 + e - ( a + b X l )  

Similarly, for individual 2, 

1 
‘2 1 + e - (a+bX2)  

(5.63) 

And so on for the remaining individuals in the sample. 
Let us consider individual 1 in more detail. We have from (5.63) 

that 
Pr(Y, - 1) = P, 

where Pr denotes “probability that.” Therefore, 

Pr(Yl = 0) = 1 - P, 
We can combine (5.65) and (5.66) into one formula: 

Pr(Y,) = P?(I - PJ*-’~)  

Let us check that this equation works. If Y, = 1, then 

Pr(Yl = 1) = P;(I - = PI checks 

If Y, = 0, then 

Pr(Y, = 0) = P~(I - P ~ ) ( ’ - O )  = 1 - PI Checks 

Similarly 

P ~ ( Y ~ )  = P?(I - PJ’-’~’ 

(5.65) 

(5.66) 

(5.67) 

(5.68) 

(5.69) 

(5.70) 

And so on up to Pr(Y,), where n denotes the number of sample cases. 
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If we assume simple random sampling, these n probabilities are 
independent. Then the probability, or likelihood, of observing our 
particular sample data is 

Pr( Y l ,  Yz ,  . . . , Y,)  = Pr( Yl)Pr( Y,) . . . Pr( Y,)  
n 

= L ( a ,  b )  (5.71) 

where I7 is the product symbol (analogous to the summation symbol 
C), and where L ( a , b )  indicates that the likelihood function, L, is a 
function of the unknown parameters, a and b. Note that the Xi and Y,  
are observed data and therefore constants in the equation, not un- 
known 

It is 
parameters. 
also useful to derive a formula for log L: 

+(1 - y;)log 1 - I 
In getting from (5.71) to (5.721, we make use of the rules log xy = 
log x + log y and log x y  = y log x .  

We wish to find the values of a and b that maximize L ( a , b ) .  
Because log L is a monotonically increasing function of L, maximizing 
L is equivalent to maximizing log L. In other words, the same values 
of a and b that maximize L also maximize log L. Mathematically, it is 
easier to maximize log L than to maximize L directly. We maximize 
log L by taking the partial derivative of log L first with respect to a 
and second with respect to by and then equating each derivative 
separately to zero, yielding two equations in two unknowns, a and b. 
These equations are then solved for a and b by numerical methods 
that are beyond the scope of this book. Derivation of the standard 
errors of a and b is also beyond the scope of this book. 
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We have sketched the essentials of this application of the maximum 
likelihood estimation (MLE) method in order to give the reader a feel 
for how the method works. MLE is also used to fit the multinomial 
logit model and the hazard model, which are considered in later 
chapters. Henceforth, we shall simply pronounce the magic words 
“maximum likelihood” and accept on faith that the model has been 
fitted. We shall then focus on model specification and interpretation, 
as in earlier chapters. 

5.7. SOME LIMITATIONS OF THE LOGIT REGRESSION MODEL 

In logit regression, the lower and upper asymptotes of the logistic 
function for P are 0 and 1. In some applications, this may not be 
realistic. Suppose, for example, that we are looking at the effect of 
education on contraceptive use in the United States. In the United 
States, even persons with no education have a probability of using 
contraception that is well above zero, so that a lower asymptote of 
zero may be unrealistic. This is not serious a problem as it might 
seem, however, because when we fit the logit regression model, we do 
not use the entire curve. In effect, we use only a piece of the curve 
corresponding to the observed range of the predictor variable. 

5.8. FURTHER READING 

A simple discussion of logit regression may be found in Wonnacott 
and Wonnacott (1979), Econometrics. A somewhat more advanced 
treatment is found in Hanushek and Jackson (1977), Statistical Meth- 
ods for Social Scientists and in Fox (1984), Linear Statistical Models 
and Related Methods. For more advanced treatments, see Walker and 
Duncan (1967), Cox (1970), Amemiya (19811, and Maddala (1983). 
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The multinomial logit model (also called the polytomous logit model) is 
a generalization of the binary logit model considered in Chapter 5 .  In 
this context, “binary” means that the response variable has two 
categories, and “multinomial” means that the response variable has 
three or more categories. As in binary logit regression, the predictors 
in multinomial logit regression may be quantitative, categorical, or a 
mixture of the two. 

6.1. FROM LOGIT TO MULTINOMLAL LOGIT 

6.1.1. The Basic Form of the Multinomial Logit Model 
The explication of the multinomial logit model is facilitated by a 
simple example. Suppose that the response variable is contraceptive 
method choice: 

P I :  estimated probability of using sterilization 
Pz: estimated probability of using some other method 
P,: estimated probability of using no method 

The categories of the response variable are mutually exclusive and 
exhaustive: A sample member must fall in one and only one of the 
categories. 

151 
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Suppose that the reference category is “no method.” As in previous 
chapters, the choice of reference category is arbitrary, insofar as this 
choice has no effect on the final estimated probabilities of using each 
method. 

Suppose also that the predictor variables are education (low, 
medium, or high) and ethnicity (Indian or Fijian): 

M: 1 if medium education, 0 otherwise 
H: 1 if high education, 0 otherwise 
I: 1 if Indian, 0 otherwise 

Our theory is that education and ethnicity influence contraceptive 
method choice. 

The multinomial logit model then consists of two equations plus a 
constraint: 

Pl 
p3 
p2 
p3 

log- = a, + b , M  + c ,H + d , l  

log- a2 + b 2 M  + c,H + d21  

P ,  + P, + P3 = 1 

( 6 . 1 ~ )  

(6.lb) 

( 6 . 1 ~ )  

Logarithms are natural logarithms (base el. In general, the number of 
model equations (including the constraint) equals the number of 
categories of the response variable. 

Strictly speaking, the quantities P1/P3 and PJP3 in (6.1) are not 
odds, because numerator and denominator do not necessarily sum to 
one. We may think of P1/P3 and P,/P3 as “improper” odds. For 
convenience, however, and in accordance with common usage, we 
shall refer to them simply as odds. Each of these odds has for its 
denominator the probability of the reference category of the response 
variable. 

The model in (6.1) can be fitted by the method of maximum 
likelihood. We assume that the mathematical form of the model is 
correct, and we choose the values of a,, b,, cl, dl, a,, b,, c,, and d ,  
to maximize the likelihood function. We shall not worry about the 
mathematical details of how this is done. Instead, we shall assume 
that the model has been fitted and proceed to examine how to use and 
interpret it. 
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6.1.2. Interpretation of Coefficients 
In multinomial logit regression, the interpretation of coefficients is not 
as straightforward as in binary logit regression. 

Suppose, for example, that d ,  is positive in (6.la). Then a one-unit 
increase in I (from 0 to 1) causes log(P,/P,) to increase by d ,  units. 
When log( P,/P3) increases, the odds P1/P3 also increase, because 
log( P1/P3) is a monotonic-increasing function of P1/P3. 

However, we cannot reason that PI itself increases. P, could 
actually decrease. This could happen if P, also decreases and if the 
proportionate decrease in P3 exceeds the proportionate decrease in 
P,. In sum, P,/P, can increase while both PI and P, decrease. 

Therefore, a positive value of d ,  does not necessarily mean that a 
one-unit increase in I acts to increase P,. The opposite may be true. 

This could not happen in binary logit regression, because the 
numerator and denominator of P/(1 - PI cannot move in the same 
direction. If P increases, 1 - P must decrease by the same amount. 
Therefore, if P/(1 - P) increases, P must also increase. 

The above discussion illustrates that, in multinomial logit regres- 
sion, the effects of the predictor variables on log(P,/P,) and P,/P3 
can be misleading, because the effects on P, can be in the opposite 
direction. The same point applies to the effects of the predictor 
variables on log( PZ/P3), P2/P3, and P,. Therefore, in presenting 
results of multinomial logit analysis, we deemphasize the odds and log 
odds and focus instead on the effects of the predictor variables 
directly on P,, P,, and P,. 

6.1.3. Presentation of Results in Multiple Classification Analysis 
(MCA) Format 
As in binary logit regression, the most convenient way to present the 
effects of the predictor variables on P,, P2, and P3 is in the form of 
an MCA table, which is constructed in the following way: 

The first step is to take each side of (6.la) and (6.lb) as a power of 
e and then multiply through by P3, yielding 

p - p a 2 + b , M + c , H + d 2 1  
2 - 3e (6.2b) 

We also have the identity 

P, = P3 ( 6 . 2 ~ )  
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If we now add (6.2a), (6.2b), and (6.2~) and recall that PI + P2 + 
P3 - 1, we get 

j -  1 

Solving (6.3) for P3, we obtain 

where the notation for the summation is now abbreviated to omit the 
limits of summation. 

Substituting (6.4) back into (6.2a) and (6.2b) and repeating (6.41, we 
obtain 

(6 .5~)  

(6.5b) 

(6.5~) 

where the summations range from j = 1 to j = 2. Equations (6.51, 
which are an alternative statement of the model in equations (6.1), are 
calculation formulae for PI, P2, and P3. A shortcut for calculating P3 
is to calculate Pl and P2 from (6.5a) and (6.5b) and then to obtain P3 
as 1 - (PI + P2). 

The MCA table is constructed by substituting appropriate combina- 
tions of ones, zeros, and mean values in equations (6.51, as shown in 
Table 6.1. For example, the formulae for PI, Pz, and P3 for those with 
high education in Table 6.1 are obtained by substituting M - 0, 
H = 1, and I = r' in (6.5a), (6.5b1, and (6.5~). The formulae forEl, Pz, 
and 5 for Fijians are obtained by substituting I = 0, M 5 M, and 
H 5 H in (6.Sa), (6.5b), and (6.5~). 

The calculation of the MCA table for multinomial logit regression 
can be very tedious on a desk calculator. The calculation is most easily 
accomplished by transferring the multinornial logit computer output 
(fitted coefficients along with the mean values of the predictor vari- 
ables) into a spreadsheet program like LOTUS. 
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TABLE 6.1. Set-up for MCA Table of Adjusted Values of Pj for the Model 
log P,/ P3 = aj + bjM + c j H  + d j I ,  j = 1,2 Fecund, Nonpregnant, 
Currently Married Women Aged 35-44 in the 1974 Fiji Fertility Survey" 

~~ ~~ 

Predictor Pl pz p3 
Variable n (Sterilization) (Other Methods) (No Method) 

Ethnicity 
e a , + d l + b l ~ + c l R  

Indian 1 + x e a j + d j + b j M + c j R  

, a , + b l S + c I R  

Fijian nF 1 + Z e a , + b , M + c , R  

n n T  n, 

e a 2 + d l + b 2 @ + c 2 R  1 

eal+b2&i+clR 1 

1 + , y ea ,+d ,+b ,M+cJR 1 + x e a j + d , + b , M + c , R  

1 + x e a , + b J R + c , R  1 + x e a , + b , R + c , R  

no O N  
~ ~~ 

'Summations in the denominators range from j = 1 to j = 2. Calculation formulae are derived from 
equations (6.5) in the text. In the last line of the table, nT denotes total sample size, ns denotes the 
sample number of sterilized women, no denotes the sample number using some other method, and 
nN denotes the sample number using no method. 

The results of fitting this model to data from the 1974 Fiji Fertility 
Survey are shown in Tables 6.2 and 6.3. In Table 6.3 the probabilities 
are multiplied by 100 and thereby reexpressed as percentages. 

Table 6.2 shows the estimated coefficients and their standard er- 
rors, which are printed out by the multinomial logit program. The 
coefficients for equation (6.la) are given in the column labeled 
log(P,/PJ, and the coefficients for equation (6.lb) are given in the 
column labeled log(P2/P3). Table 6.3 transforms the results into an 
MCA format by applying the formulae in Table 6.1 and utilizing the 
values of the coefficients in Table 6.2 and the mean values of the 
variables given in the footnote to Table 6.3. Using the formulae in 
Table 6.1, the coefficients in Table 6.2, and the mean values of the 
predictor variables given in the footnote to Table 6.3, the reader 
should recalculate the probabilities in Table 6.3 as a check on under- 
standing. 
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TABM 6.2. MultJnomjal Lo#t -ion C d d e n t a  lor the Model 
log P j /  P3 = ( I j  + bjM + cjU + d,l, j = 1,2: Fecund, Nonpregnant, 
Currently Manled Women 
Predictor 

35-44 in the 1974 m i  Fertility Survey' 

Variable lOdPl/P3) ~oo(P2/p3) 
Intercept - 1.299* (.197) - l.l53* (.197) 

Medium (MI .373 (.203) .489* (216) 
Education 

High (HI .169 (235) .709* (234) 

Ethnicity 
Indian ( I )  1.636* (.192) .732* (.193) 

"The underlying model is &en in equations (6.1). The three methods me (1) sterilization, (2) 
other method, and (3) no method. Pl/P3 compares sterilization with no method, and P,/P3 
compare8 other method with no method. Numbcn in the lop(Pl/P3) column are al, 61, cl, and 
d,,  and numbers in the 104$P2/P3) column are az, b,, c2, and d ,  [we equetiona (6.1)). An 
asterisk after a coefficient indicates that the cocficient dHen from zero with a two-tailed 
p < .05. Numbers in pannthescs following coefficient8 arc standard errors. The lop likelihood of 
the test model is log L, = -982.3. The lop likelihood of the intercept model is lop Lo - - 1031.20. The likelihood ratio test of the difference between the test model end the intempt 
model (MM Section 5.3.2 in Chapter 5) yields x z  = 97.9 with d.f. = 6, implying that p < .001 [see 
the xZ table in Appendix B (Table B.411. PseudoR - 20. 

TABLE 6.3. MCA TabJe of uwted Values of P, (in Penant) for the Model 
log Pj / P, = a, + bjM + c jH + d,I, j = 1,2: Fecund, Nonpregnant, 
Cumntlg Murid Women Aged 35-44 in the 1974 Fiji FdUty Survey' 

Variable n (Sterilization) (Other Method) (No Method) 

Education 

Predictor Pl p2 4 

Low 386 33 22 45 
Medium 289 37 28 35 
High 179 30 35 35 

Indian 575 46 24 29 
Fiiian 379 18 23 59 

n 954 335 239 380 

Ethnicity 

"Values in this table are obtained using the calculation formulae in Table 6.1, the athnetsi of 
oafRcienb in Table 6.2, and the following mean values of the predictor variables: R - 33, 
R = .188, and f = 503. 
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6.1.4. Statistical Inference 
Tests of coefficients, tests of the difference between two coefficients, 
and tests of the difference between two models are done in the same 
way as in binary logit regression. (See Section 5.3 of Chapter 5.)  Some 
of these tests are illustrated in Table 6.2. 

Because the sign of a multinomial logit regression coefficient may 
not reflect the direction of effect of the predictor variable on either of 
the probabilities on the left-hand side of the equation, tests of 
coefficients are usually two-tailed tests. 

When testing the difference between two models, one of which is 
the intercept model, the form of the intercept model, referring back to 
our earlier example, is 

Pl log- = a ,  
p3 

p2 
p3 

log- = a2 

PI  + P2 + P3 = 1 

( 6 . 6 ~ )  

(6 .6b)  

( 6 . 6 ~ )  

6.1.5. Goodness of Fit 
Pseudo-R2 is calculated in the same way as in binary logit regression. 
[See equation (5.56) in Section 5.4 of Chapter 5.1 In the multinomial 
logit example in Tables 6.1-6.3, k = 6 and the value of pseudo-R is 
.20 (see footnote in Table 6.2). The reader can check this result by 
substituting the log likelihood statistics into equation (5.56). 

6.1.6. Changing the Reference Category of the Response Variable 
Suppose we ran the model in (6.1) with “other method” instead of 
“no method” as the reference category. The model would be 

Pl 
p2 

log- = el + flM + g l H  + h l l  

p3 
pz 

log- = e, + f 2 M  + g 2 H  + h21 

( 6 . 7 ~ )  

(6.7b) 

P,  + P2 + P3 = 1 ( 6 . 7 ~ )  



158 MULTINOMIAL LOGIT REGRESSION 

As already mentioned, the estimated values of P,, P2, and P3 for 
each specified contribution of values of the predictor variables would 
come out the same as before. However, the coefficients would be 
different. 

It is not necessary to rerun the model with “other method” as the 
new reference category to estimate and test the coefficients in equa- 
tions (6.7). Instead, we can derive (6.7) from (6.1). Subtracting equa- 
tion (6,lb) from (6.la) and making use of the rule that log A - 
log B = log(A/B), we obtain 

( 6 . 8 ~ )  

Comparing (6.7a) and (6.8a), we see that el = u1 - a,, f l  = b ,  - 62, 
g,  = c1 - c2, and h, = d ,  - d,. 

Multiplying both sides of (6.lb) by -1 and making use of the rule 
that -log A = log(l/A), we obtain 

p3 
pz 

log- = -a2 - b2M - c,H - d 2 1  (6.8b) 

Comparing (6.7b) and (6.8b), we see that e2 = -u2 ,  f, = -b2,  g, = 
-c2, and h2 = -d2 .  

In sum, when we change the reference category of the response 
variable, we can obtain the new coefficients from the original coeffi- 
cients without rerunning the model. 

We can also test the significance of the new coefficients without 
rerunning the model. In (6.7a) and (6.8a), for example, we wish to test 
whether the coefficient of M ,  f l  = b, - b,, differs significantly from 
zero. In multinomial logit regression as in binary logit regression and 
ordinary multiple regression, one can optionally print out a regression 
coefficient covariance matrix, which enables one to compute the 
standard error of b,  - b, as 

4- = dVar(6,) + Var(6,) - 2Cov(6,,b2). 

It is then a simple matter to test whether b, - 62 differs significantly 
from zero. The test procedure for the difference between two coeffi- 
cients is the same as that described earlier in Section 2.9.2 of 
Chapter 2. 
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6.2. MULTINOMLAL LOGIT MODELS WITH INTERACTIONS 
AND NONLINEARITIES 

As a more complicated example including interactions and nonlineari- 
ties, let us consider the effects of age, age-squared, education (low, 
medium, high), residence (urban, rural), ethnicity (Indian, Fijian), and 
residence X ethnicity on contraceptive method choice among fecund, 
nonpregnant, currently married women aged 15-49. This example is 
identical to that given in Section 5.5.1 of Chapter 5, except that the 
response variable is now contraceptive method choice among three 
methods (sterilization, other method, no method) instead of two 
methods (use, non-use). 

The predictor variables are 

A: age 
M: 
H 
U: 
I: 

1 if medium education, 0 otherwise 
1 if high education, 0 otherwise 
1 if urban, 0 otherwise 
1 if Indian, 0 otherwise 

In log odds form, the model is 

Pl 
p3 

log- = U, + b,A + c , A 2  + d l M  + flH + glU + hlZ + ilUZ (6 .9~)  

p2 
p3 

log- = u 2  + b2A + c2A2 + d 2 M  + f i H  + g2U + h21 + i2UI 

(6.9b) 

(6 .9~)  P, + P2 + P3 = 1 

In probability form, the model is 
e a ,  + b , A  + c , A 2 i d , M + f , H i g , U + h I I i i l U I  

1 + ze a, + biA + ciA2 + d, M+ fiH +giU i hiI i iiUI P, = (6 .10~)  

ea2+ b, A i c 2  A 2 i d 2 M +  f2H+g2U+h,I+ i2UI  

1 + ze ai + biA i ciA2 + di M + f i  H +giU + h, I i iiUI (6.106) P2 = 

1 
P3 = (6.10~) 1 + ceai + b,A i ciA2 + d i M +  f iH i g i U  i h, I i ijUI 

where the summations range from j = 1 to j = 2. 
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TABLE 6.4. Mul#nomi.l La@ Bslpwrion CoclRdentr tlor the Model 
log PI/ PJ - a, + B,A + c,Aa + dJM +f ,H + p,U + k,I + i,UI, j 9 1,2: 
Fecund, Nonpregnant, Currently Married Women Aged 1549 in the 1974 FljI 
Ferulity survey. 

Predictor 
Variable led PIP3) lOdp2/p3) 
Intercept - 18.247* (1.311) -4.304* (.661) 
&@(A) .856* ( -074) .187* (.042) 
Agequared (A2)  - .011* ( ,001) - ,003* (.001) 
Medium education (MI .157 ( .127) .372* (.lo91 
High education (HI -.155 ( .146) .552* (.112) 
Urban (U) .869* ( .193) ,050 (.144) 
Indian ( I )  1.740* ( .150) .899* (. 110) 
Urban X Indian (UI) -.710* ( .228) .255 (.178) 

*The underlying *el is given in equations (6.9). The three methods are sterilization, 
other method, and no method. PJP, compares sterilization with no method, and P,/P, 
compares other method with no method. An asterisk after a cafRcient indicates that the 
ooefflcient d@en from zero with a two-sided p < .05. Numbers in parenthese, following 
cocftkients are standard errors. The log liltellhood of the test modal is log L1 = -3199.44. 
The log likelihood of the intercept model is log Lo - -3623.01. The lietibood ratio test 
of the difference bttwGon the test model and the intercept model b 847.14 with d.f. - 14; 
consultation of the x z  table in Appendix B (Table B.4) indicates p < .001. Pseudo- 
R - 3. 
The MCA table is constructed by substituting appropriate combina- 

tions of ones, zeros, and mean values in equations (6.10). Because A2 
and UI are treated as separate variables, means are calculated as the 
mean of A2 (instead of the square of the mean of A )  and the mean of 
UI (instead of the mean of U times the mean of I). 

Results of fitting the model, as given in equations (6.9) and (6.10), 
are shown in Tables 6.4 and 6.5. As a check on understanding, the 
reader should derive the numbers in Table 6.5, starting from equa- 
tions (6.101, the fitted coefficients in Table 6.4, and the mean values of 
the predictor variables in the footnote to Table 6.5. 

61. A MORE GENERAL FORMULATION 
OF THE MULTINOMIAL U)GFT MODEL 

We now consider the more general case where the response variable 
has J mutually exclusive and exhaustive categories, denoted j = 
1,2,. . . , J. The Jth category is taken as the reference category for the 
response variable. Because the ordering of the categories is arbitrary, 
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4 log- = c b j k X k ,  j = 1 , 2 , .  . . , J - 1 
‘J k 

CP,-l 
i 

TABLE 6.5. MCA Table of Aausted Values of P, (in Percent) for the Model 
l o g P / / P ,  =a,  + bjA + cjA2 + d , M  +AH + g j U  + h,I + i jUI,  j = 1,2: 
Fecund, Nonpregnant, Currently Married Women Aged 15-49 in the 1974 Fdi 
Fertility Survey 

( 6 . 1 1 ~ )  

(6.1 1 b )  

Predictor Pl p2 p3 
Variable n (Sterilization) (Other Method) (No Method) 

Age 
15 
25 
35 
45 

Education 
LOW 
Medium 
High 

Residence X 
ethnicity 

Urban Indian 
Urban Fijian 
Rural Indian 
Rural Fijian 

n 

- 
- 
- 
- 

1266 
1044 
1169 

854 
375 

1265 
985 

3479 

0 
6 

31 
35 

14 
14 
10 

18 
11 
18 
5 

715 

23 
37 
30 
23 

28 
36 
41 

44 
24 
38 
25 

1095 

77 
57 
38 
42 

58 
50 
48 

37 
65 
44 
70 

1669 

‘Values in this table are obtained using equations (6.101, the estimates of coefficients in Table 
6.4, and the following means of the predictor variables: x= 31.03, $ = 1021.66, = .300, 

= .336, = .353, i = .609, and iii= .245. 

any category can be the J th  category, so that the choice of the 
reference category is also arbitrary. 

In the general case there are also K predictor variables, denoted 
X I ,  X , ,  . . . , X,. The variables Xi may denote not only variables like 
A, U, and I ,  but also variables like A’ and UZ. 

The multinomial logit model is then specified in log odds form as 

where the summation C k  ranges from k = 0 to k = K ;  where, for 
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e Ekbjk xk 

j = 1,2,.. . ,  J pi== 1 + &eEkblkXk ' 

convenience, X, is defined as X, = 1; and where the summation Ej 
ranges from j = 1 to j = J. We define X, = 1 in order to be able to 
write the right side of (6.11a) more compactly as a summation of a 
single term, bin&, that includes the intercept as bi0 = bjoX,. Equa- 
tion (6,lla) actually represents J - l equations. Therefore, equations 
(6.11a) and (6.11b) together represent J equations, with ( J  - 1XK + 
1) coefficients to be estimated. 

By taking each side of (6.11a) as a power of eaand multiplying 
through by PJ, we can rewrite (6.11a) as 

(6.15) 

4 = P J e z k b j k x k ,  j = 1,2,. .., J - 1 (6.12~) 

We also have 

pJ * pJ (6.12 6) 

We now sum the J equations in (6.12a) and (6.12b) to obtain 

where X, = 1, the summation over j ranges from j = 1 to j = J - 1, 
and the summation over k ranges from k = 0 to k = K. Solving for 
PJ, we get 

(6.14) 

Substituting back into (6.12a) and (6.12b), we obtain the formulation 
of the model in probability form: 

r -  I 

where X, = 1, the summation Ck ranges from k - 0 to k = K, the 
summation CI ranges from i = 1 to i = J - 1, and bJ,, bJl, ...,c?Ny 
are all defined to be zero. This latter definition implies that 
ezkbJkxk = eo = 1, so that (6.15) reduces to (6.14) when j = J. The 
definition b,, = bJ, = - - = bJK = O allows the equations for 4 ( j  * 
1,2,. . . , J )  to be written in the compact one-line form in (6.15). 
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One interprets and tests this general model in the same way as 
explained for the simpler examples elaborated earlier in Sections 6.1 
and 6.2. 

6.4. RECONCEPTUALIZING CONTRACEPTIVE METHOD 
CHOICE AS A TWO-STEP PROCESS 

The multinomial logit models considered above conceptualize contra- 
ceptive method choice as a one-step process. A woman perceives 
three options: sterilization, some other method, or no method. She 
considers each of the options and then chooses one of them. The act 
of choosing among the three options is done all in one step. 

An alternative conceptualization is that contraceptive method choice 
is a two-step process: First a woman chooses whether or not to use 
contraception at all. If the outcome is to use contraception, the 
second step is to choose a particular method. 

The first of these two steps is appropriately modeled by a binary 
logit model. The second step, if numerous contraceptive methods are 
considered, is appropriately modeled by a multinomial logit model. In 
our previous examples from the Fiji survey, however, only two options 
(sterilization or “other method”) remain once the choice to use 
contraception is made. Thus, in these examples, the second step is 
also appropriately modeled by a binary logit model. 

In the binary logit model of the first of these two steps, let us define 
the observed value of the response variable to be 1 if the woman 
chooses to use contraception (without having yet decided which 
method) and 0 otherwise. Let us denote the predicted value of this 
response variable by P, the probability of using contraception. 

The second binary logit model, pertaining to the second step of 
choosing a particular method of contraception, is fitted only to the 
subset of women who actually choose during the first step to use 
contraception (i.e., to the subset of women whose observed value of 
the response variable in the first step is 1). In our model of the second 
step, let us define the observed value of the response variable to be 1 
if the woman chooses sterilization and 0 otherwise (otherwise now 
being “other method”). Let us denote the predicted value of the 
response variable in this second model by P’, the probability of 
choosing sterilization. P‘ is a conditional probability. It is conditional 
on first choosing to use contraception irrespective of method. 

Taken together, the results of the two models for the first and 
second steps imply that the probability that a woman in the original 
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TABLE 6.6. Combined MCA Results for the Two-Step Choice Model: Fecund, 
Nonpregnant, Cumntly Married Women Aged 15-49 in the 1974 Fiji Fertllity Survey" 
Predictor PP' P(l - P') 1-P 
Variable (Sterilization) (Other Method) (No Method) 

Age 
15 
25 
35 
45 

Education 
L O W  
Medium 
High 

0 
5 
32 
37 

18 
40 
29 
25 

16 32 
15 39 
10 45 

Residence x 
ethnicity 

Urban Indian 19 
Urban Fijian 13 
Rural Indian 20 
Rural Fijian 5 

47 
27 
41 
28 

82 
55 
39 
38 

53 
46 
44 

33 
60 
39 
67 

'The only difference between this table and Table 6.5 is that Table 6.5 assumes a one-step process 
of contraceptive method choice, whereas this table assumes a two-step process. Tho models used to 
generate the two tables have the same variables and were applied to the same input data. See text 
for further explanation. 

sample chooses to use contraception and then chooses sterilization is 
PP', the probability that she chooses to use contraception and then 
chooses some other method is P(1 - P'), and the probability that she 
chooses not to use contraception at all is 1 - P. It is easily verified 
that these three probabilities add to one, as they must. 

How do results from the two-step approach compare with our 
earlier results from the one-step approach? To find out, we redid 
Table 6.5 using the two-step approach. We first produced two inter- 
mediate MCA tables (not shown), one for each of the two binary logit 
models corresponding to each of the two steps. Thus the first of these 
two intermediate tables contained estimates of P, and the second 
contained estimates of P', tabulated in each case by the same predic- 
tor variables shown in the row labels of Table 6.5. The probabilities 
P and P' in these two tables were then combined in the man- 
ner described in the previous paragraph. The combined MCA results 
are shown in Table 6.6, which may be compared with the results in 
Table 6.5 from the one-step approach. The two tables differ, but not 
by much. In this example, at least, whether choice is conceptualized as 
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a one-step or a two-step process does not make much difference in the 
results. 

Which model should one use, the one-step model or the two-step 
model? This question must be answered on the basis of theory and 
evidence from previous studies. In the case of contraceptive use in Fiji 
in 1974, however, the choice between the two models is not clear. It 
seems plausible that many women decided in two steps, in which case 
a two-step model seems justified. But for others the decision whether 
to use contraception at all may have been affected by what methods 
were locally available, in which case a one-step model seems justified. 
Without more evidence, we cannot say which mode of choice behavior 
predominates. In the absence of such evidence, it seems prudent to 
estimate both models and then compare the results. 

In a country like the United States, where a wide variety of 
contraceptive methods are universally available, the decision whether 
to use contraception at all is not affected by availability of methods, so 
that a two-step model is more clearly appropriate. 

6.5. FURTHER READING 

More advanced treatments may be found in Theil (19691, Cragg and 
Uhler (19701, Schmidt and Strauss (19751, Amemiya (19811, and 
Maddala (1983). 
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