Q1. Explain the concept of cybernetics in ecosystems

a) Define cybernetics and its relevance to ecology. (3 marks)

Answer:

Cybernetics is the scientific study of control and communication in systems, both living and non-living. In ecology, cybernetics refers to how ecosystems maintain stability and adapt to changes through feedback mechanisms, energy flows, and information exchange among components.

Relevance to ecology:

- Helps in understanding self-regulation of ecosystems.
- Explains how ecosystems respond to **disturbances** (e.g., pollution, climate change).
- Provides a framework for modeling ecological balance using feedback loops.

Schematic diagram:

```
Environment Input → Ecosystem Processes → Output (Response)

↑ 

Feedback <------
```

b) Describe the components of a cybernetic ecosystem with examples. (4 marks)

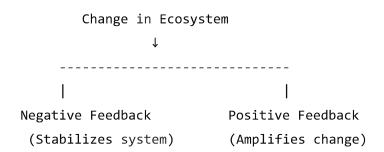
Answer:

A cybernetic ecosystem consists of the following components:

- 1. **Input** Energy or materials entering the system.
 - Example: Solar radiation, rainfall, nutrients.
- 2. **Processing unit** Biotic and abiotic interactions that transform inputs.
 - Example: Photosynthesis by plants, nutrient cycling by decomposers.
- 3. Output Energy or matter released back.
 - Example: Oxygen, heat loss, organic waste.
- 4. **Feedback mechanism** Regulatory processes ensuring system stability.
 - Example: Predator-prey population control.

Schematic diagram:

c) Discuss the significance of feedback mechanisms in ecosystem regulation. (3 marks) Answer:


Feedback mechanisms are crucial for maintaining ecological balance:

- Negative feedback: Restores balance by counteracting changes.
 - Example: Increase in herbivores → more predation → herbivore population decreases → balance restored.
- Positive feedback: Amplifies changes, may lead to instability.
 - Example: Melting of polar ice reduces albedo → increases warming → accelerates ice melt.

Significance:

- Maintains homeostasis of ecosystems.
- Regulates **population dynamics** and **energy flow**.
- Helps ecosystems adapt to environmental change.

Schematic diagram:

