Q1. Biodiversity documentation using GIS (for Earth Science students)

(a) Definitions (3 marks)

Biodiversity documentation

Systematic recording of the variety of life—genes, species, and ecosystems—along with where and when each record was observed. It includes field and museum records, remote-sensing observations, eDNA results, photos, and the metadata (who/when/how) needed to verify and reuse those records.

Geographic Information System (GIS)

A framework (software + data + methods) to **store**, **manage**, **analyze**, **and map spatial data**. In GIS, information is organized as **layers** (points, lines, polygons, rasters) with a **coordinate reference system** and an **attribute table**. GIS lets us link each biodiversity record to a location, visualize patterns, and run spatial analyses.

Schematic (what each term covers and how they relate)

(b) Process: mapping biodiversity using GIS tools (4 marks)

1) Frame the study

Define **objective** (e.g., map amphibian hotspots), **extent/scale** (watershed, ecoregion), and **time window** (e.g., 2015–2025).

2) Gather data

• Occurrence data: GPS points from surveys, citizen science, museum records (species, date, accuracy).

- **Environmental layers:** land cover, elevation/derived terrain (slope, aspect), soils/geology, hydrography, climate/bioclim variables.
- Remote sensing: optical indices (e.g., NDVI), thermal, radar; multi-date imagery for change detection.
- Administrative layers: protected areas, roads, settlements.

3) Quality control & harmonization

De-duplicate, remove obvious errors (e.g., points in the ocean for terrestrial species), standardize taxonomic names, set a **common projection/CRS**, and document **positional accuracy**.

4) Build the geodatabase

Organize clean layers (vector + raster) with clear naming, metadata, and scales/resolutions matched to the question.

5) Spatial analysis

- Presence mapping: plot points with accuracy buffers.
- Sampling effort correction: thin clustered records; or use effort layers.
- **Density/Hotspots:** Kernel density, Getis-Ord Gi*, or grid-based **species richness** (count species per cell).
- **Habitat suitability (optional):** environmental overlays or species distribution modeling (SDM) to estimate suitable areas.
- Connectivity (optional): least-cost paths or circuit theory for corridors between habitat patches.
- Change analysis: compare land cover or habitat metrics across dates.

6) Cartography & communication

Design clear maps (legend, scale bar, north arrow, source/metadata, classification), export layouts, and —if needed—publish web maps/dashboards.

7) Validation & iteration

Ground-truth a subset of sites, update with new surveys, refine layers and models.

Schematic (end-to-end workflow)

(c) Two advantages of using GIS in biodiversity conservation (3 marks)

- 1. Reveals spatial patterns & priorities
 GIS exposes hotspots, gaps, and corridors—supporting decisions like where to protect, restore, or survey next. This improves cost-effectiveness and transparency compared with ad-hoc choices.
- 2. Integrates multi-source data for monitoring & scenarios
 GIS fuses field observations with land cover, hydrology, geology, and climate layers,
 enabling change detection (e.g., habitat loss since 2016) and what-if planning (e.g., proposed road vs. corridor integrity).

Schematic (how GIS strengthens decisions)

[Conservation Actions]

Protected areas ► Restoration ► Monitoring design