Principle and Use of Gas Chromatography (GC)

Principle:

Gas Chromatography (GC) is an analytical technique used to separate and analyze volatile compounds based on their **partitioning between a mobile gas phase and a stationary phase** inside a column.

1. Separation Mechanism:

- The sample is vaporized and carried by an inert gas (mobile phase, e.g., He, N₂,
 H₂) through a coated capillary column (stationary phase).
- Components separate based on their boiling points, polarity, and affinity for the stationary phase.
- Higher affinity or lower volatility → longer retention time.

2. Detection Principle:

 As compounds exit the column, a detector (e.g., FID, TCD, MS) measures their concentration, generating a chromatogram (peaks vs. time).

Uses of Gas Chromatography:

1. Qualitative & Quantitative Analysis:

- o Identifying unknown compounds (e.g., drugs, pollutants, flavors).
- Measuring concentrations (e.g., blood alcohol, pesticide residues).

2. Petrochemical Industry:

Analyzing hydrocarbons in fuels and oils.

3. Environmental Testing:

• Detecting volatile organic compounds (VOCs), greenhouse gases.

4. Forensic & Pharmaceutical Applications:

• Drug testing, toxicology, purity checks.

5. Food & Fragrance Industry:

• Analyzing food additives, essential oils, spoilage markers.

Schematic Diagram of a Gas Chromatograph

Key Components:

- 1. Carrier Gas: Inert gas that carries the sample (e.g., Helium, Nitrogen).
- 2. Injector: Introduces and vaporizes the sample (split/splitless mode).
- 3. Column:
 - Packed Column (for simple mixtures).
 - Capillary Column (higher resolution, common in modern GC).
- 4. Oven: Controls column temperature (isothermal or gradient).
- 5. Detector:
 - Flame Ionization Detector (FID) Hydrocarbon analysis.
 - Thermal Conductivity Detector (TCD) Universal detection.
 - Mass Spectrometer (GC-MS) Compound identification.
- 6. Data System: Records and analyzes chromatographic peaks.

Advantages of GC:

- ✓ High resolution & sensitivity.
- ✓ Fast analysis (minutes to hours).
- ✓ Compatible with various detectors (FID, MS).

Limitations:

- X Only works for volatile & thermally stable compounds.
- X Requires sample preparation (derivatization for non-volatile compounds).

GC is widely used in **research**, **industry**, **and regulatory testing** due to its precision and reliability in separating complex mixtures.