Principle and Use of UV-Visible Spectroscopy

Principle:

UV-Visible spectroscopy is based on the **absorption of ultraviolet (UV) and visible light** by molecules, leading to electronic transitions from the ground state to an excited state.

1. **Beer-Lambert Law**: The absorbance (A) of a solution is directly proportional to its concentration (c) and path length (l):

$$A = \epsilon \cdot c \cdot l$$

where:

- \circ A = Absorbance (no units)
- ϵ = Molar absorptivity (L·mol⁻¹·cm⁻¹)
- \circ *c* = Concentration (mol/L)
- l = Path length (cm)

2. Electronic Transitions:

- When molecules absorb UV-Visible light (190–800 nm), electrons transition between energy levels (e.g., $\pi \rightarrow \pi$, $n \rightarrow \pi$).
- o Conjugated systems (e.g., aromatic compounds, dyes) absorb strongly in this region.

Uses of UV-Visible Spectroscopy:

- 1. Quantitative Analysis:
 - Determining the concentration of unknown solutions (e.g., drugs, biomolecules).
- 2. Qualitative Analysis:
 - o Identifying functional groups (e.g., aldehydes, ketones, conjugated dienes).
- 3. Chemical Kinetics:
 - Monitoring reaction progress by tracking absorbance changes.
- 4. Pharmaceutical & Biochemical Applications:
 - DNA/RNA analysis, protein quantification (e.g., Bradford assay).
- 5. Environmental Analysis:
 - Detecting pollutants (e.g., heavy metals, organic contaminants).

Schematic Diagram of a UV-Visible Spectrophotometer:

+	-+ +-		+ +	
Light Source	1	Monochromator		Sample Cuvette
(Deuterium/Halogen)	>	(Selects wavelengt	h) >	(Holds solution)
+	-+ +-		+ +	
				V
+	-+ +-		+ +	
Detector	<	Display/Computer	<	Data Processor
(Photodiode/PMT)	1	(Shows absorbance)		(Analyzes results)
+	-+ +-		+ +	

Key Components:

- 1. Light Source: Emits UV (Deuterium lamp) and visible (Tungsten/Halogen lamp) light.
- 2. Monochromator: Selects a specific wavelength.
- 3. **Sample Cuvette**: Holds the sample solution (usually quartz for UV, glass/plastic for visible).
- 4. **Detector**: Measures transmitted light (Photodiode or Photomultiplier Tube).
- 5. **Data System**: Displays absorbance/transmittance spectra.

This technique is widely used due to its **simplicity**, **accuracy**, **and broad applicability** in chemistry, biology, and environmental science.